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On Relaxation Phenomena in Field-Flow Fractionation 

K. JAYARAJ and R. SHANKAR SUBRAMANIAN* 
DEPARTMENT OF CHEMICAL ENGINEERING 
CLARKSON COLLEGE OF TECHNOLOGY 
POTSDAM, NEW YORK 13616 

Abstract 

The two-dimensional unsteady convective diffusion equation satisfied by the 
local concentration of the colloid introduced in a field-flow fractionation (FFF) 
column is solved by the method of finite differences. The alternating direction 
implicit (ADI) method proposed by Peaceman and Rachford is used. The 
axial convection term is approximated by a backward difference approximation 
to obtain a stable and convergent scheme. 

Numerical results are obtained for various values of the transverse Peclet 
number for the case of steady laminar flow and a slug input. The numerical 
results from the AD1 method are validated by comparison with numerical 
solutions obtained using an explicit scheme as well as by internal consistency 
checks. 

The results of this work show that the transverse concentration profiles 
depend in a complex fashion on axial position along the cloud during relaxation. 
In the presence of a field, asymptoticity in the transverse profiles is approached 
first in the rear of the colloid cloud, and progresses gradually through the axial 
extent of the cloud. Ultimately, at a sufficiently large value of time, almost all 
of the colloid relaxes to asymptotic exponential distributions in the transverse 
coordinate as predicted from theory. The local concentration of colloid in the 
system is observed to reach a global maximum value at intermediate values of 
time during relaxation. The area average concentration distribution is observed 
to exhibit strong asymmetry when plotted against the axial coordinate at 
intermediate times both in the presence and in the absence of a field. This 
asymmetry is in accord with pure convection theory. In contrast, truncated two- 
term dispersion equations only predict symmetric distributions for symmetric 
initial conditions. Thus there may be a need to retain higher order terms in the 
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792 JAYARAJ A N D  SUBRAMANIAN 

application of generalized dispersion theory in order to predict the observed 
results. 

INTRODUCTION 

Field-flow fractionation (FFF) or polarization chromatography refers 
to a general class of methods used for the separation of colloidal mixtures. 
Described in several publications by Giddings and co-workers (1-5) 
and Lightfoot and co-workers ( 6 4 ,  the technique involves the introduc- 
tion of a colloid mixture at the inlet of a channel in which a suitable 
fluid is in laminar flow. As the various species move downstream, they 
are forced toward a system boundary either by transverse flow or by the 
use of suitable transverse fields. Ultimately, each colloidal solute relaxes 
to a unique asymptotic transverse distribution whose nature depends 
on the balance between its transverse migration and Brownian motion. 
In view of the nonuniform axial velocity field in the channel and the dif- 
ferences in the transverse concentration distributions among the colloids, 
the various species travel at different average velocities down the channel 
and may be separated. 

Hovingh et al. (&a) have examined the relaxation of a colloid dis- 
tribution in an FFF column using a pure convection model. More re- 
cently, Krishnamurthy and Subramanian (9) have developed a detailed 
theoretical description of the unsteady convective diffusion of a colloid 
in an FFF column right from time zero. These workers showed that the 
average concentration distribution of the colloid satisfies a generalized 
dispersion equation with time-variable coefficients. For practical reasons, 
they truncated their dispersion equation after two terms. It can be shown 
that such a truncated dispersion equation (TDE) will only predict average 
concentration distributions which are symmetric in the axial coordinate 
(about the center of gravity of the colloid) for initially symmetric colloid 
clouds. However, the experimental results of Yang et al. (10) suggest 
that axially asymmetric colloid distributions may exist in an FFF column 
during the relaxation period. It is quite possible that the initial distribu- 
tions in the above experiments were not symmetric in the axial coordinate 
which may very well explain the shape of the reported breakthrough 
curves. But it is interesting and important to determine if, indeed, an 
independent solution of the governing equations would predict asym- 
metries for an initially symmetric distribution. Also, during the initial 
stages of the relaxation process, solute accumulates near a system bound- 
ary, resulting in large local concentrations at that boundary. At larger 
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RELAXATION PHENOMENA IN FFF 793 

values of time, concentrations generally decrease because of the axial 
spreading of the colloidal solute. Therefore, a global maximum of the 
local concentration may be reached during the relaxation period. Such 
a maximum is of considerable interest since large values of colloid con- 
centration would make the assumption of a dilute system less realistic in 
theoretical analyses.* For this reason, and for developing a better physical 
understanding of the relaxation process during which most of the axial 
spreading of the colloid occurs in a typical high-field-strength application 
of FFF, it is important to examine local concentration distributions of 
the colloid during relaxation. In principle, it is possible to use analytical 
solutions such as those of Tseng and Besant ( 1 2 )  or DeGance and Johns 
(12) for calculating local concentration profiles. Also, truncated versions 
of generalized dispersion theory may be used for such calculations. 
However, the labor involved is substantial, and in the present work a 
numerical solution of the governing equations has been obtained using 
the method of finite differences in view of the relative simplicity of this 
technique. It is found that the numerical results of this work are physically 
realistic and provide a lot of useful information regarding the convective 
diffusion process in an FFF column. 

ANALYSIS 

The unsteady convective diffusion of a colloid introduced into a FFF 
column will be analyzed. The column is assumed to be made of two 
parallel plates w units apart and b units wide. The coordinate system 
is shown in Fig. 1. The primary flow is in the z-direction with a velocity 

+b+ 

2 Y 

SIDE VIEW END VIEW 

FIG. 1. The coordinate system. 

*In concentrated systems, the effects of particle-particle and/or particle-wall interac- 
tions may be quite complex. For instance, Myers et al. (28) observed decreasing retention 
as they increased the particle concentration in the injected sample in FFF experiments. 
Such a result is likely to be caused by such interactions. 
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794 JAYARAJ A N D  SUBRAMANIAN 

field u(x), and a transverse field applied across the channel causes the 
migration of the colloid in the negative x-direction with a constant 
velocity u. Assuming the system to be dilute (and ignoring free convection 
effects), and further assuming a large aspect ratio (b/w >> l), the convective 
diffusion equation describing the local concentration of colloid may 
be written as 

For simplicity, the present calculations are restricted to the following 
initial condition: 

c(0, x, 2) = co, 1.21 _< -zs 4 
= 0, 121 > zzs  ‘ 1  

This initial condition describes a slug of colloid of uniform concentration 
c,,. The slug is uniform in the transverse coordinate x, and is z, units long. 
It is located symmetrically about z = 0. Since the walls of the column 
are impermeable to the colloid, assuming no adsorption of the colloid 
on these walls, the flux of the colloid across either wall is zero. Therefore, 

ac 
ax -D-(t ,  0 ,  Z )  - uc(t, 0, Z )  = 0 

dC 
-D-(t ,  w,  2)  - uc(t, w, z )  = 0 ax 

Since the amount of colloid introduced is finite, 

The axial velocity field is given by 

u(x) = 6 u m 6  - $) 
Using the dimensionless variables and parameters defined in the section 
on “Symbols,” Eqs. (1) and (2) may be rewritten in dimensionless form 
as 

ac a c  a c  a z c  I a2c 
aT a z  tax ax2 Pe2 a z 2  - +  U(X)--Pe-=--I--- (3) 
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RELAXATION PHENOMENA IN FFF 795 

ac 
ax -(T, 0,Z)  = -Pe,C(T, 0 , Z )  

ac 
&T, 1,Z) = -Pe,C(T, 1,Z) (44 

( 4 4  

(44 

C(T,  x, +a) = 0 

V(X) = 6(X - X2) 
Equations (3) and (4) were solved in the present work using finite 

difference techniques [Jayaraj (13)].* The alternating direction implicit 
(ADI) technique proposed by Peaceman and Rachford (14) and discussed 
by Douglas (15) was employed for the solution. When convection domi- 
nates diffusion, as is the case in the axial direction in the present problem, 
conventional central difference approximations of the convection term 
result in unstable schemes. For instance, instabilities were observed by 
Gill and Ananthakrishnan (16) in their AD1 solution of convective 
diffusion in a capillary. To overcome this problem, Runchal and 
Wolfshtein (17) proposed the use of a backward (with respect to the 
flow) difference approximation of the convection term. This upwind 
difference scheme (UDS) is unconditionally stable and quite accurate 
when sufficiently small space intervals are employed. Spalding (18) 
and Runchal (19) later suggested another modification of UDS which is 
stable and accurate at all values of the (axial) Peckt number, Pe. This 
procedure reduces to the central difference scheme at low Peclet numbers 
and to UDS at high Peclet numbers. Since under typical operating con- 
ditions the axial Peclet number Pe is large in an FFF column, a value of 
Pe = 1000 was chosen for use in the present calculations. For this value 

*The grid points in 2 were equally spaced initially, with the spacing being increased 
at larger times to handle the increased axial extent of the colloid. The grid spacing 
in the transverse coordinate X was nonuniform for nonzero Pet--the smallest spacing 
was at X = 0 with the spacing increasing in geometric progression for increasing X. 
This grid-point distribution was selected over the simple equal-six grids because of 
the exponential nature of the asymptotic transverse distributions, and proved to be 
convenient. 
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796 JAYARAJ AND SUBRAMANIAN 

of Pe, the UDS is quite acceptable, and therefore it was used in calculating 
all the results reported here. Since it is not possible to account for bound- 
aries at infinity in a numerical scheme, axial stations sufficiently far away 
from the colloid distribution were chosen as artificial axial boundaries 
on the system. These boundaries were moved farther out as necessary 
during the course of the calculations. The results of the numerical calcu- 
lations using the AD1 method were checked in several ways for consistency 
and accuracy. These included comparisons with numerical results from 
explicit schemes and tests for convergence using smaller interval sizes. 
Also, the first axial moments of the area and bulk average concentrations 
from finite difference results may be used to calculate the coefficients 
K l (  T )  and K,(T) of generalized dispersion theory. These were checked 
against the results of Krishnamurthy and Subramanian (9)  after suitable 
conversion of the dimensionless variables. Generally, the agreement was 
excellent at Pet = 0 and was still quite good at the largest Pet (Pet = 30) 
investigated in this work [the deviations in K,(T) varied from 0.5% for 
Pet = 0 to 3.5% for Pet = 30, with typical deviations being under 1 %; 
the deviations in K,(T) were much smaller]. A detailed discussion of 
the accuracy of the numerical solutions reported here may be found in 
Jayaraj (13). It should be emphasized that Kl(T)  and K,(T) were com- 
puted from the axial moments of the numerical solution strictly for the 
purpose of validating the numerical solution. Since a complete knowledge 
of ths local concentration field immediately implies a complete knowledge 
of the average concentration field, the finite difference procedure is not 
an acceptable alternative to dispersion theories for the purpose of predict- 
ing dispersion coefficients-the theories permit the calculation of such 
coefficients from first principles without ever having to compute either 
the local or the average concentration field. 

Since it is desired to compare the results of the present work for the 
area average concentration of the colloid with the solution of the trun- 
cated dispersion equation (TDE) of Krishnamurthy and Subramanian 
(9), their TDE in the present notation is given below: 

Here C,,,(T, 2) is the area average concentration defined by 
1 

c,(T, z) = J C(T, x, z) dx 
0 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
0
5
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



RELAXATION PHENOMENA IN FFF 797 

The initial condition on C,(T, Z )  is obtained from Eqs. (4a) and (6) as 

The boundary conditions on C, are obtained from Eq. (4d) as 

C,(T, * co) = 0 (8) 
The solution of Eqs. (7) and (8) is well-known [see, for instance, Gill and 
Sankarasubramanian (20)] : 

Here 

and 

Results from Eq. (9) for C,(T, 2) will be referred to as the solution of the 
“truncated dispersion equation” in the present discussions. The results 
were evaluated using the computer programs developed by Krishnamurthy 
(21) after suitable conversion of dimensionless variables. The correspond- 
ence between the dimensionless variables used in the present numerical 
work and those used by Krishnamurthy and Subramanian (9) is sum- 
marized by Jayaraj (13). 

In the limit of Pet = 0 (no field), the pure convection solution (which 
ignores diffusion) may be expected to describe system behavior at least 
in a qualitative sense for small values of time. For Pet = 0, ignoring 
diffusion, Eq. (3) reduces to 

ac ac 
- + U ( X ) - =  0 aT az 

The initial condition on C, is given in Eq. (4a). The solution of the 
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798 JAYARAJ A N D  SUBRAMANIAN 

equations obtained using the method of characteristics is given below : 

From Eqs. (6)  and (12), the cross-sectional average concentration Cm(T, Z )  
under pure convection conditions is given by the following results : 

For T I +Zs,  

1 
2 (134 em = 0, z I - - zs  

1 1 = I -  1 -  (’ + 3 z s )  ( -?ZS < Z 2 1.5T - - Z s )  (13b) J 1.5T ’ 2 

1 
2 cm=o, Z I  --zs 

= d v 7  ( 1 . 5 ,  - - Z s  1 < Z I 1.5T + - Z s )  1 (14d) 2 2 
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RELAXATION PHENOMENA IN FFF 799 

When Pet # 0, the calculation of the pure convection solution is slightly 
more complex. This is because colloid retention at the lower boundary 
( X  = 0) will have to be accounted for in an artificial manner in the solu- 
tion. For the purposes of the present work, Eqs. (13) and (14) for the case 
of Pet = 0 are adequate. 

RESULTS AND DISCUSSION 

The AD1 method was used in this work to calculate the dimensionless 
local concentration C as a function of dimensionless time T, the di- 
mensionless transverse coordinate X ,  and the dimensionless axial coordi- 
nate 2. In addition to its dependence on T, X ,  and 2, C also depends 
parametrically on the axial Peclet number Pe, the transverse Peclet number 
Pe, (equal to twice the parameter P used by Krishnamurthy and 
Subramanian), and the dimensionless slug length, Z,. All the computations 
were performed for Pe = 1000 which is a typical value for a FFF 
column. Values of Pet = 0, 5, 10, and 30 were investigated systematically. 
In all the cases, different slug lengths in the range 0.01 to 0.1 were ex- 
amined. The results judged to be most interesting will be presented here. 
More details may be found in Jayaraj (13). For convenience in the sub- 
sequent discussion, the results are divided into two cases-Pet = 0 and 
Pet # 0. The former corresponds to the case of no transverse field. 

Special Case of N o  Field (Pet = 0) 

This case was studied as a logical first step before attempting the 
more complex case of Pet # 0. Even though the analogous problem in 
a circular tube has been investigated numerically by Ananthakrishnan 
and Gill (16) and Bailey and Gogarty (22), finite difference solutions 
for the parallel-plate geometry have not been reported in the literature. 
Analytical results from generalized dispersion theory are available in 
Hsieh (23).* The numerical results for Pet = 0 are useful as a comparison 
standard for the Pet # 0 case, and also are sufficiently interesting and 
new that they are discussed in some detail here. Local concentration 
distributions can be effectively displayed in the form of isopleths of 
constant concentration. Figure 2 shows isopleths at a dimensionless 
time T = 0.025. The figure clearly shows the expected symmetry of 

*For Pe, = 0, &(T) = -1 for ail values of time for a uniform initial distribution. 
It was convenient to evaluate c(T)using Krishnamurthy’s (21) computer programs which 
calculated Hsieh’s results in the limit Pet = 0. 
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FIG. 2. Isopleths of constant concentration as functions of dimensionless 
transverse and axial coordinates. 

these curves about the centerline (X = 0.5). There appear to be zones of 
high concentration near the center of the channel and close to the channel 
walls in the (axially) central regions of the distribution. This can be ex- 
plained as follows. At the center, the velocity gradients are negligible 
and axial dispersion of the solute originally present at the center can 
be expected to be minimal. Near the walls, the velocity gradients are 
large but the actual velocities are quite small, and hence the axial dis- 
persion of the solute is relatively small. From these curves one may expect 
the area average concentration distribution in the axial coordinate to 
have a sharp front and a long tail similar to a pure convection model. 

Figure 3 shows a comparison of area-average concentration distributions 
at T = 0.025 from the present calculations with results from the two- 
term truncated dispersion theory and the pure convection model. The 
dimensionless area average concentration C, is plotted as a function of the 
dimensioniess axial coordinate Z in the figure. The figure shows the pure 
convection solution to be highly asymmetric in the axial coordinate. This 
is the case for a parallel plate channel when the center of the rear end of 
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FIG. 3. Comparison of dimensionless mean concentration against dimensionless 
axial coordinate from the present work, from Krishnamurthy and Subramanian 

(9), and from the pure convection solution. 
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802 JAYARAJ AND SUBRAMANIAN 

the slug moving at the maximum velocity of flow has moved past the 
axial station occupied by the front end of the initial slug (T  5 0.6672,). 
The change of slope in the C ,  vs 2 plot occurs at 2 = +2,. Concentration 
distributions for  the purely convective dispersion of a slug in a circular 
capillary under similar conditions are always symmetric about their center 
of gravity. This is the reason why the limitations of the two-term dispersion 
equation (whch only predicts symmetric profiles in Z for symmetric 
initial conditions) did not become apparent earlier. The figure shows the 
numerical solution to be in qualitative agreement with the pure convection 
solution while being more realistic in smoothing out the sharp corners 
in the latter solution. Furthermore, the changes in slope as well as the 
peak are seen to occur very close to the locations predicted by the pure 
convection model, thus promoting confidence in the numerical solution. 
From the figure it is clear that higher order terms need to be retained 
in the generalized dispersion equation to predict the observed behavior 
of the area-average concentration accurately. However, it should be 
painted out that the ith truncated version of generalized dispersion 
theory predicts the first (i + 1) axial moments (both power moments and 
Hermite moments) of the solute distribution precisely. For instance, by 
suitable integration of the generalized dispersion equation, Subramanian 
(24) shows how the temporat integrals of the coefficients K,(T) of gener- 
alized dispersion theory are related to the corresponding power moments 
of the solute distribution. DeGance and Johns (12), in an elegant develop- 
ment of the theory of dispersion problems, show that the i’th dispersion 
approximation predicts the first (i + 1) Hermite moments precisely. 
They further speculate that such an approximation may even excite the 
higher order Hermite moments in the proper direction. An examination 
of the pure convection solutions reported in Eqs. (13) and (14) reveals 
that a knee in the distribution corresponding to a rapid change of slope 
at 2 = +ZS predicted by Eqs. (14b) and (14c) materializes only when 
T 3 $2,. This was indeed observed to be the case in the present numerical 
work. Furthermore, from intuition, one may expect the knee in the profiles 
to be smoothed out at large values of time due to the persistent action 
of diffusion. To a first approximation, the diffusion time across the 
channel half-width may be estimated to be on the order of T - 0.125. 
This would mean that a knee in the average concentration profiles may 
be observed only in the time range 0.6672, 5 T 6 0.125. Therefore, 
for a sufficiently long slug (0.6672, F 0.125), the knee should never 
materialize. It appears that the above estimate is conservative since 
no knee was observed even when calculations were made for a slug of 
dimensionless length Z, = 0.1 (not reported here). 
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FIG. 4. Comparison of dimensionless mean concentration against dimensionless 
axial coordinate from the present work and from Krishnamurthy and 

Subramanian (9). 

Figure 4 shows the dimensionless average concentration distribution 
as a function of the dimensionless axial coordinate at T = 0.1, a value 
of time sufficiently large for the knee to be smoothed out. However, con- 
siderable differences still exist between the solution of the two-term 
dispersion equation and the finite difference results. Small differences 
still persist a t  larger times even though they may become less important 
as time increases. The accuracy of the finite difference calculations would 
become progressively worse at larger times due to accumulating errors. 
Hence the differences seen in Fig. 4 and in results at larger T values 
may possibly be due to such errors. However, the possibility cannot 
be ruled out that higher order dispersion approximations may bring 
the analytical results closer to those of the numerical work. 

It is interesting to see how well the two-term dispersion approxima- 
tion predicts transverse concentration distributions. In generalized 
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804 JAYARAJ AND SUBRAMANIAN 

dispersion theory, C(T, X, 2) is given by 

where the functions fk(T, X )  are obtained from first principles. For a 
transversely uniform initial distribution with Pet = 0, 

fo s 1 (16) 
Use of Eq. (16) in (15), and slight rearrangement, lead to 

Equation (1 7) suggests that transverse concentration profiles will, in 
general, depend on axial position. However, a first approximation to 
the right-hand side gives 

(18) 
c - c, 

a G  - 
az 

fl(C X )  only 

Since a similar approximation is involved in the derivation of the two- 
term dispersion equation (Eq. 5), it is interesting to check if the predictions 
of Eq. (18) are reasonable at any value of time. Plots at three different 
axial locations of the left-hand side in Eq. (18) calculated from the nu- 
merical results are shown in Fig. 5 for a small value of time, T = 0.025. 
The figure also shows the functionf,(T, X) at this value of time, calculated 
from dispersion theory (Hsieh’s results were converted to the present 
system of dimensionless variables for presentation). It may be seen from 
the figure that, at this value of time, the truncation of the solution of 
generalized dispersion theory implied in Eq. (1 8) leads to unrealistic 
predictions of local concentration behavior in the central region of 
the distribution while being qualitatively correct in the front and rear 
regions of the same slug. This is understandable since aCm/a2 is very 
small in the central region whereas the next higher derivative is not. 
The figure points to the need to include more terms in the right-hand 
side of Eq. (18) for the proper description of local concentration distribu- 
tions at small values of time. It was found that at larger values of T 
(T  5 OS), the left-hand side of Eq. (18) reaches asymptoticity in the 
transverse coordinate and is independent of Z over most of the solute 
cloud. Agreement with 

f l , ( X )  = limitfl(T, X )  
T+CO 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
0
5
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



RELAXATION PHENOMENA IN FFF 805 

-0.02 -0.01 0 0.01 0.02 0.03 

( C  - c, 1 / b C , / b Z  OR f, (T.X) 

FIG. 5.  Comparison of (C - C,,,)/(aC,/aZ) against dimensionless transverse 
coordinate from the present work at 2 = 0.01, 0.025, and 0.04 with fi(7', X) 

from Hsieh (23). 

from Hsieh (23) was very good. Thus Eq. (18) is a viable result for suf- 
ficiently large values of time. Figure 6 shows the isopleths at T = 0.5 
which demonstrate the extent of transverse mixing achieved by diffusion 
at such large values of time. The small values of C reflect the dilution due 
to axial spreading. 

Nonzero Pet 

The relaxation of an initially uniform colloid slug is described by 
Figs. 7 to 10 for Pet = 5, which is a typical value for a FFF column. 
Figure 7 shows the isopleths at a relatively small value of the dimension- 
less time (T  = 0.025). From the figure it may be observed that the colloid 
has generally begun to accumulate near the lower wall of the channel, 
while the region near the upper wall is correspondingly depleted af 
colloid. The isopleths in the central region are not too different from 
those in the case of no field. This is to be expected for such small values 
of time when the central region of flow simply receives material from above 
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FIG. 6. Isopleths of constant concentration as functions of dimensionless 
transverse and axial coordinates. 
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FIG. 7. Isopleths of constant concentration as functions of dimensionless 
transverse and axial coordinates. 
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RELAXATION PHENOMENA IN FFF 807 

(due to the action of the field) and transmits it to the regions below. The 
one difference is that the pocket of high concentration observed at the 
center in the case of no field seems to have moved down and merged 
with the similar pocket observed at the wall. The transverse gradients 
in the rear end of the colloid distribution are much sharper than those 
at the front. Also, at the rear, the transverse distribution has begun 
to approach asymptoticity. It is clear from Fig. 7 that the colloid con- 
centration distribution at this value of time is a complex function of 
both transverse and axial position. Furthermore, the actual transverse 
distributions appear to vary widely over the axial extent of the colloid. 
These distributions are plotted at selected axial locations in Fig. 8 for 
the same set of parameters used in Fig. 7. 2 = 0.005 corresponds to 
an axial location near the rear end of the distribution. It may be seen 
that colloid has been convected away from the central region of the channel 
(near X = 0.5) while there is colloid accumulation near the bottom wall. 
Near the upper boundary, with slower moving fluid, colloid still is present 

X 
I .o 

0.8 

0.6 

0.4 

0.2 

0 
0 0.2 0.4 0.6 0.8 1.0 

DIMENSIONLESS LOCAL CONCENTRATION , C 

FIG. 8. Plots of dimensionless local concentration against dimensionless 
transverse coordinate at Z = 0.005, 0.02, and 0.035. 
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in significant quantities. Similar behavior is observed at Z = 0.02, a loca- 
tion near the center of the axial extent of the colloid. However, in the 
rear end of the colloid distribution (at Z = 0.005), steeper transverse 
concentration gradients may be observed near the lower boundary. In 
fact, at this axial station the distribution looks very similar to the as- 
ymptote anticipated over the entire axial extent of the colloid at large 
time. The rear end is quick to reach the asymptotic condition since no 
new colloid deposition near the lower boundary will occur at larger 
values of time. From a physical point of view, it may be expected that the 
asymptotic transverse distributions reflecting a balance between transverse 
migration and diffusion will be reached first near the rear end and will 
progressively occur at larger values of time over the axial extent of the 
colloid. This was indeed observed during the course of the present calcula- 
tions. For completeness, the transverse concentration profile near the 
front end of the colloid distribution ( Z  = 0.035) also is plotted in Fig. 8. 
The similarity of system behavior at such axial stations to the no-field 
case is evident from the figure. 

Figure 9 shows isopleths for Pet = 5 at a relatively large value of 
the dimensionless time (T  = 0.5). At this time, as may be seen from the 
figure, the relaxation process appears to be near completion over almost 
the entire axial extent of the colloid cloud. The nearly parallel isopleths 
indicate similarity in the transverse concentration profiles. One can also 
expect the concentrations to be symmetric with respect to a properly 
chosen axial location. The similarity of the transverse concentration 
profiles is demonstrated by Fig. 10. The transverse distributions at three 
axial locations are plotted using the wall concentration as the scale factor 
for each location. Z = 0.25, 0.35, and 0.5 correspond to axial locations 
in the rear, center, and front regions of the distribution, respectively. 
In the generalized dispersion theory of Krishnamurthy and Subramanian 
(9), the local concentration C(T, X, Z )  is written in the form given in Eq. 
(11). However, even when the initial distribution is uniform in X, because 
of the presence of the field, fo(T, X) # 1, and instead, asymptotically 
approaches an exponential function of X. Therefore, when the derivatives 
akC,,,/aZk (k = 1,2, 3, . . .) are small, Eq. (15) may be approximated 
by 

c - f,(T X)C*(T, Z )  (19) 
Equation (19) predicts that the shapes of transverse concentration profiles 
would be similar at all axial locations, and would be given by fo(T, X ) .  
Figure 8 shows that this is not true at small values of T, and higher order 
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FIG. 9. Isopleths of constant concentration as functions of dimensionless 
transverse and axial coordinates. 

terms would need to be included in the right-hand side of Eq. (19). How- 
ever, at large T, Eq. (19) is a good approximation, as shown by the 
similarity of the transverse concentration profiles in Fig. 10. Plotted 
for comparison purposes in the same figure is fo( T, X )  with fo( T, 0) used 
as a scale factor. At T = 0.5, fo(T, X )  is practically independent of T 
and is given by Krishnamurthy and Subramanian as 

The agreement in Fig. 10 among the various profiles is quite satisfactory. 
The figure shows better agreement of fo(T, X )  with the transverse con- 
centration profile near the center of the colloid cloud than with the other 
two profiles. This is to be expected since aC,,,/aZ is very small near the 
center of the distribution, and Eq. (19) is practically a second-order 
approximation. It also is of interest to note here that the exponential 
transverse concentration distributions observed in Fig. 10 at large times 
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0 0.2 0.4 0.6 0.8 I .o 
c /c ,  OR to/ fO,W 

FIG. 10. Plots of dimensionless local concentration against dimensionless 
transverse coordinate from the present work and fo(T, X )  against the dimen- 
sionless transverse coordinate from Krishnamurthy and Subramanian (9) 

(all scaled using the values at the wall). 

were predicted by Giddings (25) who presented an asymptotic theory 
of FFF using intuitive assumptions similar to those of Taylor (26). 

For purposes of comparison, Fig. 11 shows the isopleths at T = 0.05 
for a large value of the transverse Peclet number (Pet = 30). It is seen 
from the figure that this relatively small value of time is adequate for 
the colloid distribution to reach a relaxed asymptotic state. From the 
predictions of Krishnamurthy and Subramanian, relaxation may be 
expected to occur in this system for T 6 l/Pe,. It should be noted that 
the ordinate is marked from 0 to 0.3 in this figure. Therefore, the trans- 
verse extent of the colloid is very narrow, as one would expect. Very high 
concentrations are observed in regions close to the lower boundary, 
and practically all the solute is contained in the region X 2 0.25. It was 
observed by Jayaraj (13) that the transverse distributions at different 
axial stations are all similar and merge into one profile when the wall 
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FIG. 1 1 .  Isopleths of constant concentration as functions of dimensionless 
transverse and axial coordinates. 

concentration is used as a scale factor, in agreement with theory. The 
profile also is indistinguishable frornfo(T, X )  scaled byfo(T, 0). 

Maximum Concentrations 

The values of the maximum colloid concentrations reached in the 
system are of considerable interest since a large concentration buildup 
will lead to particle-particle interactions, osmotic effects, etc., and may 
ultimately limit the strength of the field that may be employed. As the 
collaid begins its journey through an FFF column, colloid buildup 
occurs initially at the lower wall, leading to large concentrations. However, 
this process cannot continue indefinitely because of the diluting effect of 
the axial dispersion of the colloid caused by velocity gradients. Ultimately, 
as time approaches infinity, the colloid concentration must approach 
zero everywhere. Therefore, the concentration must peak out at some 
intermediate value of time during relaxation. The present finite difference 
results permit the determination of the maximum concentrations and the 
times at which they occur for various transverse Peclet numbers. It was 
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812 JAYARAJ AND SUBRAMANIAN 

observed that over most of the axial extent of the distribution, the maxi- 
mum concentrations occurred at the lower wall ( X  = 0), as expected. 
At Pet = 5, the maximum concentration at T = 0.005 was observed at 
2 = 0.004, slightly behind the center of the distribution. However, the 
location of the maximum concentration in this case moved axially at a 
considerably lower velocity than the average velocity of the colloid, and 
the maximum concentration was found to occur consistently in the rear 
end of the colloid cloud. For Pet = 5 ,  a global maximum local concentra- 
tion equal to approximately twice the initial concentration in the colloid 
slug was observed at T x 0.01 and 2 x 0.005. In contrast, for Pet = 30, 
the global maximum local concentration reached was approximately 
I1  times the initial concentration and occurred at T = 0.02 and 2 % 

0.007. In both cases, C,,, was reached during the relaxation period, 
and could not have been computed from any other solution technique 
known at this time. The large C,,, value for Pet = 30 indicates that the 
assumption of a dilute system used in the analyses of FFF columns may 
not be a good one. 

Figures 12 and 13 show a comparison of the average concentration 
distributions computed using the finite difference method with the solution 
of the truncated two-term dispersion equation (TDE) from the generalized 
dispersion theory of Krishnamurthy and Subramanian (9).  The figures 
are plotted for one typical value of the transverse Peclet number 
(Pet = 10). However, the distributions remained qualitatively similar 
at the other values of Pet investigated in this work (Pet = 1, 5, 10,20, 30). 
Figure 12 shows the comparison at a value of dimensionless time T = 
0.025. The TDE predicts a symmetric axial concentration distribution 
whereas the numerical results show a knee in the concentration profile- 
similar differences were seen in the limit of no field, Pet = 0. Figure 13, 
plotted at T = 0.5, shows the knee in the finite difference results has 
been smoothed out, but minor differences still persist between the two 
solutions. Interestingly, it is seen that the finite difference peak which 
was ahead of the two-term dispersion theory peak in Fig. 12 has now 
moved behind the dispersion theory peak. This is because of the rela- 
tively large amount of colloid contained in the rear half of the colloid 
cloud at the smaller value of time in Fig. 12. As the knee is smoothed out 
by convective diffusion, this excess material results in the lagging of the 
finite difference peak behind the TDE peak. 

The results for the average concentration distributions for Pet # 0 
are qualitatively similar to those reported for the limit of no field (Pet = 0) 
and indicate that higher order terms may be important enough to include 
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FIG. 12. Comparison of dimensionless mean concentration against dimen- 
sionless axial coordinate from the present work and from Krishnamurthy and 

Subramanian (9). 
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FIG. 13. Comparison of dimensionless mean concentration against the dimen- 
sionless axial coordinate from the present work and from Krishnamurthy and 

Subramanian (9). 
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in truncated dispersion equations. The resulting higher order partial 
differential equations may perhaps be solved using techniques such as 
those of Gola et al. (27). 

CONCLUSIONS 

The unsteady transport of a colloid introduced in a FFF column 
has been analyzed. An unconditionally stable AD1 method was used to 
solve the convective diffusion equation numerically, and the results 
have been verified using an explicit scheme at small values of time. Results 
from the present work show a complex dependence of transverse con- 
centration profiles on the axial coordinate during relaxation. Asymptoticity 
of these profiles is observed first in the rear region of the colloid cloud 
and progressively propagates through the entire axial extent. Com- 
parisons with results from dispersion theory show that the function 
fo of Krishnamurthy and Subramanian (9) is a good first-order approx- 
imation for the transverse profiles in a FFF column at sufficiently 
large values of time. 

It has been shown that the largest values of the local concentration in 
a FFF column occur during the relaxation period. The present numerical 
results indicate that the assumption of a dilute system may have to be 
relaxed for large values of the transverse Peclet number. 

The convection and dispersion coefficients calculated from the present 
work show good agreement with the results of Krishnamurthy and 
Subramanian, thus promoting confidence in both results. However, 
axial average concentration distributions exhibit strong asymmetry at 
intermediate values of time in accordance with pure convection theory. 
These results are in disagreement with the predictions of a truncated two- 
term dispersion theory, thus pointing to a need to include higher order 
terms in the analytical results. 

SYMBOLS 

b channel width in the y-direction 
C dimensionless concentration ; c/co 

C,,, area average concentration defined in Eq. (6) 
c local concentration of colloid 

co reference concentration : initial concentration in the slug 
D molecular diffusivity of colloid 
fk coefficient functions in Eq. (15) 
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f o s  

Ki 
Pe 

Pet 
T 
t 

U 

Urn 

U 

u 
W 

X 

Y 
Z 

Z S  

X 

Z 

ZS 

steady-state asymptote of fo 
coefficients in generalized dispersion equation 
axial Peclet number, Pe = u,w/D 
transverse Peclet number, Pet = vw/D 
dimensionless time; T = Dt/w2 
time 
dimensionless axial velocity; U = u/u, 
axial velocity 
reference velocity : average axial velocity 
transverse migration velocity 
channel spacing in the x-direction 
dimensionless transverse coordinate ; X = X/W 

transverse coordinate shown in Fig. 1 
lateral coordinate shown in Fig. 1 
dimensionless axial coordinate; 2 = z/wPe 
dimensionless slug length; 2, = z,/wPe 
axial coordinate shown in Fig. 1 
slug length 
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